Stochastic Variation of the Hubble's Parameter using Ornstein- Uhlenbeck Process
نویسندگان
چکیده
منابع مشابه
Ornstein - Uhlenbeck Process
Also, a process {Yt : t ≥ 0} is said to have independent increments if, for all t0 < t1 < . . . < tn, the n random variables Yt1 − Yt0 , Yt2 − Yt1 , ..., Ytn − Ytn−1 are independent. This condition implies that {Yt : t ≥ 0} is Markovian, but not conversely. The increments are further said to be stationary if, for any t > s and h > 0, the distribution of Yt+h− Ys+h is the same as the distributio...
متن کاملThe generalized Ornstein–Uhlenbeck process
Langevin-like equations have been studied in the presence of arbitrary noise. The characteristic functional of the generalized Langevin process has been built up. Exact results for all cumulants are given. Particular stress has been put on the Campbell, dichotomous and radioactive decay noises. Transient relaxation, susceptibility and diffusion constants for different (noisy) media have been sk...
متن کاملProperties of the Reflected Ornstein-Uhlenbeck Process
Consider an Ornstein–Uhlenbeck process with reflection at the origin. Such a process arises as an approximating process both for queueing systems with reneging or state-dependent balking and for multiserver loss models. Consequently, it becomes important to understand its basic properties. In this paper, we show that both the steady-state and transient behavior of the reflected Ornstein–Uhlenbe...
متن کاملParameter estimation for fractional Ornstein-Uhlenbeck processes
We study a least squares estimator b θT for the Ornstein-Uhlenbeck process, dXt = θXtdt+σdB H t , driven by fractional Brownian motion B H with Hurst parameter H ≥ 1 2 . We prove the strong consistence of b θT (the almost surely convergence of b θT to the true parameter θ). We also obtain the rate of this convergence when 1/2 ≤ H < 3/4, applying a central limit theorem for multiple Wiener integ...
متن کاملOrnstein - Uhlenbeck Process Steven Finch
Also, a process {Yt : t ≥ 0} is said to have independent increments if, for all t0 < t1 < . . . < tn, the n random variables Yt1 − Yt0 , Yt2 − Yt1 , ..., Ytn − Ytn−1 are independent. This condition implies that {Yt : t ≥ 0} is Markovian, but not conversely. The increments are further said to be stationary if, for any t > s and h > 0, the distribution of Yt+h− Ys+h is the same as the distributio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2020
ISSN: 0975-8887
DOI: 10.5120/ijca2020920162